Презентация на тему анаболизм и катаболизм клетки. Энергетический обмен - катаболизм презентация к уроку по биологии (11 класс) на тему

Данная презентация может быть использована на уроке при изучении одноименной темы: "Метаболизм. Энергетический обмен".

Презентация позволяет учителю дступно объяснить учащимся, что такое метаболизм, каково его значение. Ребята получат полное представление о двух неразрвно связанных друг с другом процессах ассимиляции и диссимиляции. Таблицу1, представленную на одном из слайдов можно предложить учащимся заполнить самостоятельно или заполнять сообща. При этом важно акцентировать их внимание на 4-ую колонку. Данная таблица поможет ребятам разобраться, что происходит с веществом и энергией в процессе ассимиляции и диссимиляции. Слайд №5 позволит еще раз напомнить учащимся об особенностях строения АТФ и указать на макроэргические связи, в которых запасается часть энергии. Схема, размещенная на слайде №6, поможет ребятам запомнить, чем отличается энергетический обмен у аэробных и анаэробных организмов. Таблицу2 лучше заполнять в процессе объяснения материала об основных этапах энергетического обмена. Если класс сильный, можно предложить учащимся заполнить таблицу самостоятельно, опираясь на текст в учебнике. В конце урока ребята заполняют пропуски в выводе, указывая на то, какой же этап энергетического обмена более эффективный.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Метаболизм. Энергетический обмен. Презентация к уроку биологии в 9 классе. Подготовила учитель биологии первой категории Медведева Елена Львовна

Обмен веществ гомеостаз постоянство внутренней среды организма обмен веществ совокупность реакций синтеза и распада

Обмен веществ (Метаболизм) Энергетический обмен (диссимиляция) Пластический обмен (ассимиляция) Совокупность реакций, обеспечивающих клетку энергией Совокупность реакций, обеспечивающих клетку строительным материалом

Заполните таблицу1 Исходные вещества Конечные вещества Энергия (запасается, расходуется) Ассимиляция Диссимиляция

выделяющаяся энергия запасается в АТФ- природном аккумуляторе

Этапы энергетического обмена организмы АЭРОБЫ (+О 2) АНАЭРОБЫ (-О 2) 3 этапа энергетического обмена 2 этапа энергетического обмена

Запоните таблицу 2 Этапы энергетического обмена Исходные продукты Конечные продукты Как используется энергия Где протекает Подготови тельный Безкисло родный Кислород ный

«Обмен веществ» - Высшая школа, 2002 год стр. 150-152. Тепловая. Мы считаем, что существует тесная взаимосвязь веществ и энергии с окружающей средой. Между обменом веществ и энергии с окружающей средой существует тесная взаимосвязь. Гипотеза: Химическая. Обмен веществ: определение и этапы обмена веществ. Преобразование веществ внутри организма представлены пластическим и энергетическим обменом.

«Обмен веществ и энергии» - Самостоятельная работа с учебником. Проговорить друг другу ответы на вопросы, поставить баллы. Тихонова С.Ю. Что такое выделение? Обмен веществ и энергии у растений и животных. Обмен веществ растений и животных. 1. Ответьте на вопросы: Какие удаляются из организма? Фотосинтез = органические вещества + кислород.

«Обмен веществ растений» - В сочных яблоках находится запас органических веществ. Растения дышат кислородом, а выдыхают углекислый газ. Дыхание происходит днем и ночью во всех живых клетках растений. Задача 1. Объясните, как произошло образование и накопление органических веществ в яблоке. Задача 2. Обмен веществ и энергии у растений.

«Процесс обмена веществ» - Основополагающий вопрос: МОУ средняя общеобразовательная школа №5 г.Искитим. Катаболические процессы - дыхание, гликолиз, брожение. 5. Самостоятельная работа. 11. Метаболизм – основа существования живых организмов. Что такое катаболизм?

«Обмен веществ в организме» - Поступление питательных веществ и энергии из внешней среды. Математика. Расщепление белков. Использование организмом положительных компонентов данных преобразований. Технология. Биология. Физика. Энергетический обмен. Обмен веществ в клетке. Как трансформируется энергия в живом организме? Механическая.

«Вещество и энергия» - Чем живое отличается от неживого? Теплокровные. Проверьте свои знания. Пищевая цепь. Теплопродукция. Как хорошо когда никто не мешает… Минеральные соли. Вода. Жиры. Холоднокровные. Фотосинтез. Заяц. Обмен веществ. Передача энергии.

Всего в теме 13 презентаций

Обмен веществ и
энергии

Обмен веществ и энергии - Метаболизм

Обмен веществ и энергии ­
Метаболизм
совокупность процессов
превращения веществ и
энергии в живом организме и
обмен веществами и
энергией между организмом
и окружающей средой.

Метаболизм –
это совокупность взаимосвязанных, но
разнонаправленных процессов,
анаболизма (ассимиляции) и
катаболизма (диссимиляции).
Анаболизм ­ это совокупность процессов
Анаболизм
биосинтеза органических веществ, компонентов
клетки и других структур органов и тканей.
Катаболизм ­ это совокупность процессов
Катаболизм
расщепления сложных молекул, компонентов
клеток, органов и тканей до простых веществ и
до конечных продуктов метаболизма (с
образованием макроэргических и
восстановленных соединений).

В процессе метаболизма обеспечиваются
пластические и энергетические потребности
организма.
Пластические потребности – построение
Пластические потребности
биологических структур организма.
Энергетические потребности ­
Энергетические потребности
преобразование химической энергии
питательных веществ в энергию
макроэргических (АТФ и другие молекулы) и
восстановленных (НАДФ Н ­ никотин­амид­
адениндинуклеотидфосфат) соединений.

Взаимосвязь процессов катаболизма и анаболизма

Взаимосвязь процессов
катаболизма и анаболизма

Главную роль в
сопряжении
анаболических
и
катаболических
процессов в
организме
играют:
АТФ,
НАДФ Н.

Катаболизм анаэробноый и аэробный

Катаболизм
анаэробноый и аэробный
Обеспечение энергией
процессов
жизнедеятельности
осуществляется за счет
анаэробного
(бескислородного) и
аэробного (с
использованием
кислорода) катаболизма
поступающих в организм с
пищей белков, жиров и
углеводов.
Процессы анаболизма и
катаболизма находятся в
организме в состоянии
динамического
равновесия или временного
превалирования одного из
них.

Теплота первичная и вторичная

Теплота первичная и
вторичная
1. Часть энергии в процессе катаболизма
используется для синтеза АТФ, другая часть этой
энергии превращается в теплоту (первичную).
2. Аккумулированная в АТФ энергия в
последующем используется для осуществления в
организме работы и в конечном итоге тоже
превращается в теплоту (вторичную).
Количество синтезированных молей АТФ на
моль окисленного субстрата зависит от его
вида (белка, жира, углевода) и от величины
коэффициента фосфорилирования.

Коэффициент фосфорилирования (Р/О) -

Коэффициент фосфорилирования
(Р/О) ­
количество синтезированных молекул
АТФ в расчете на один атом кислорода.
Какая часть энергии будет использована на
синтез АТФ зависит от величины Р/О и
эффективности сопряжения в
митохондриях процессов дыхания и
фосфорилирования.
Разобщение дыхания и фосфорилирования
ведет к уменьшению коэффициента Р/О,
превращению в первичную теплоту
большей части энергии химических связей
окисляемого вещества.

Пути метаболизма питательных веществ

Пути метаболизма
питательных веществ

Белки и их роль в организме

Белки и их роль в организме
Животные существа могут усваивать азот
только в составе аминокислот,
поступающих в организм с белками пищи.
Незаменимые аминокислоты. Десять
аминокислот из 20 (валин, лейцин,
изолейцин, лизин, метионин, триптофан,
треонин, фенилаланин, аргинин и
гистидин) в случае их недостаточного
поступления с пищей не могут быть
синтезированы в организме.
Заменимые аминокислоты в случае
недостаточного поступления их с пищей
могут синтезироваться в организме.
Полноценные и не полноценные белки.

Белки и их роль в организме

Белки и их роль в организме
У здорового взрослого человека количество
распавшегося за сутки белка равно
количеству вновь синтезированного.
Скорость распада и обновления белков
организма различна.
Полупериод распада
гормонов пептидной природы составляет минуты
или часы, белков плазмы крови и печени -около
10 сут, белков мышц -около 180 сут.
Белки, использующиеся в организме в первую
очередь в качестве пластических веществ, в
процессе их разрушения освобождают
энергию для синтеза в клетках АТФ и
образования тепла.

Коэффициент изнашивания по Рубнеру

Коэффициент изнашивания по
Рубнеру
О суммарном количестве белка, подвергшегося
распаду за сутки, судят по количеству азота,
выводимого из организма человека.
В белке содержится около 16 % азота (т. е. в 100 г
В белке содержится около 16 % азота
белка - 16 г азота).
Выделение организмом 1 г азота соответствует
распаду 6,25 г белка.
За сутки из организма взрослого человека
выделяется около 3,7 г азота.
Масса белка, подвергшегося за сутки полному
разрушению, составляет 3,7 х 6,25 = 23 г, или
23 г
0,028-0,075 г азота на 1 кг массы тела в сутки.

Азотистый баланс

Азотистый баланс
Если количество азота, поступающего в организм
с пищей, равно количеству азота, выводимого из
организма, принято считать, что организм
находится в состоянии азотистого
равновесия.
Когда в организм поступает азота больше, чем
его выделяется, говорят о положительном
азотистом балансе (задержке, ретенции
азота).
Когда количество выводимого из организма азота
превышает его поступление в организм, говорят
об отрицательном азотистом балансе.

Липиды и их роль в организме

Липиды и их роль в организме
Липиды организма человека:
триглицериды, фосфолипиды, стерины.
Липиды играют в организме
энергетическую и пластическую роль.
В удовлетворении энергетических потребностей организма
В удовлетворении энергетических потребностей
основную роль играют нейтральные молекулы жира
(триглицериды).
Пластическая функция липидов в организме осуществляется,
Пластическая функция липидов
главным образом, за счет фосфолипидов, холестерина, жирных
кислот.
По сравнению с молекулами углеводов и белков молекула
липидов является более энергоемкими.
За счет окисления жиров обеспечивается около 50 % потребности
в энергии взрослого организма.
Жиры являются источником образования эндогенной воды.
При окислении 100 г нейтрального жира в организме образуется
около 107 г воды.

Углеводы и их роль в организме

Углеводы и их роль в
организме
Организм человека получает углеводы в виде растительного
полисахарида крахмала и в виде животного полисахарида
гликогена.
В желудочно­кишечном тракте осуществляется их расщепление до
уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы).
Моносахариды всасываются в кровь и через воротную вену
поступают в печеночные клетки.
В печеночных клетках фруктоза и галактоза превращается в
глюкозу.
Концентрация глюкозы в крови поддерживается на уровне 0,8
-1,0 г/л.
При избыточном поступлении в печень глюкозы она превращается
в гликоген.
По мере снижения концентрации глюкозы в крови происходит
расщепление гликогена.
Глюкоза выполняет в организме
энергетические и пластические функции.
Глюкоза необходима для синтеза частей молекул
нуклеотидов и нуклеиновых кислот, некоторых
аминокислот, синтеза и окисления липидов,
полисахаридов.

Минеральные вещества и их роль в организме

Минеральные вещества и их
роль в организме
Минеральные вещества: Натрий, Кальций, Калий,
Минеральные вещества:
Хлор, Фосфор, Железо, Йод, Медь, Фтор, Магний,
Сера, Цинк, Кобальт.
Из них к группе микроэлементов относятся: йод,
Из них к группе микроэлементов относятся:
железо, медь, марганец, цинк, фтор, хром,
кобальт.
Функции минеральных веществ:
являются кофакторами ферментативных реакций,
создают необходимый уровень осмотического давления,
обеспечивают кислотно­основное равновесие,
участвуют в процессах свертывания крови,
создают мембранный потенциал и потенциал действия
возбудимых клеток.

Витамины и их роль в организме

Витамины и их роль в
организме
Витамины - группы разнородных по химической природе
веществ, не синтезируемых или синтезируемых в
недостаточных количествах в организме, но необходимых
для нормального осуществления обмена веществ, роста,
развития организма и поддержания здоровья.
Витамины не являются непосредственными источниками энергии
и не выполняют пластических функций.
Витамины являются составными компонентами ферментных
систем и играют роль катализаторов в обменных процессах.
Основными источниками водорастворимых витаминов
являются пищевые продукты растительного происхождения и в
меньшей мере животного происхождения.
Основными источниками жирорастворимых витаминов
являются продукты животного происхождения.
Для удовлетворения потребностей организма в витаминах
имеет значение нормальное осуществление процессов
пищеварения и всасывания веществ в желудочно­
кишечном тракте.

Уравнение энергетического баланса

Уравнение энергетического
баланса
Е = А + Н + S
Е - общее количество энергии, получаемой
организмом с пищей;
А - внешняя (полезная) работа;
Н - теплоотдача;
S - запасенная энергия.

Физическая калориметрия («бомба») Бертло

Физическая калориметрия
(«бомба») Бертло
1- проба пищи;
2 - камера,
3 - заполненная
кислородом;
запал;
4 - вода;
5 - мешалка;
6 - термометр.
Е = А + Н + S

Е = А + Н + S

Е = А + Н + S

Биокалориметр Этуотера - Бенедикта Е = А + Н + S

Биокалориметр
Этуотера - Бенедикта
Е = А + Н + S

затрат организма

Способы оценки энергетических
затрат организма

Калорический эквивалент кислорода (КЭ02)

Калорический эквивалент
кислорода (КЭ02)
Основным источником энергии для
осуществления в организме процессов
жизнедеятельности является биологическое
окисление питательных веществ. На это
окисление расходуется кислород. Следовательно,
измерив количество потребленного организмом
кислорода можно судить о величине
энергозатрат организма за время измерения.
Между количеством потребленного за единицу
времени организмом кислорода и количеством
образовавшегося в нем за это же время тепла
существует связь, выражающаяся через
калорический эквивалент кислорода (КЭ02).
КЭ02 ­ количество тепла, образующегося в
организме при потреблении им 1 л
кислорода.

Способы оценки энергетических
затрат организма
Прямая калориметрия основана на измерении
количества тепла, непосредственно рассеянного
организмом в теплоизолированной камере.
Непрямая калориметрия основана на
измерении количества потребленного организмом
кислорода и последующем расчете энергозатрат с
использованием данных о величинах
дыхательного коэффициента (ДК) и КЭ02.
Дыхательный коэффициент ­ отношение
объема выделенного углекислого газа к
объему поглощенного кислорода.
ДК = Vco2/Vo2

Основной обмен -

Основной обмен ­
минимальный уровень энергозатрат,
необходимых для поддержания
жизнедеятельности организма в условиях
относительно полного физического,
эмоционального и психического покоя.
Энергозатраты организма возрастают при физической
и умственной работе, психоэмоциональном
напряжении, после приема пищи, при понижении
температуры среды.
Для взрослого мужчины массой 70 кг величина
энергозатрат составляет около 1700 ккал/сут (7117
кДж), для женщин - около 1500 ккал/сут.
Расчет должного основного обмена у человека по
таблицам Гарриса и Бенедикта (с учетом пола, массы
тела, роста и возраста).

Основной обмен

Основной обмен
определяют методами прямой или непрямой
калориметрии.
Нормальные величины основного обмена у
взрослого человека можно рассчитать по
формуле Дрейера:
Н = W/K А,
где W -масса тела (г), А -возраст, К-константа
(0,1015 для мужчин и 0,1129 - для женщин).
Величина основного обмена зависит от соотношения в
организме процессов анаболизма и катаболизма.
Для каждой возрастной группы людей установлены и
приняты в качестве стандартов величины основного обмена.
Интенсивность основного обмена в различных органах и
тканях неодинакова. По мере уменьшения энергозатрат в
покое их можно расположить в таком порядке: внутренние
органы-мышцы-жировая ткань.

Регуляция обмена веществ и энергии

Регуляция обмена веществ и
энергии
Цель:
обеспечение потребностей организма в
энергии и в разнообразных веществах в
соответствии с уровнем функциональной
активности.

Является мультипараметрической, т.е.
включающей в себя регулирующие системы
(центры) множества функций организма
(дыхания, кровообращения, выделения,
теплообмена и др.).

Центр регуляции обмена веществ и энергии

Центр регуляции обмена
веществ и энергии
Роль центра регуляции обмена веществ и
энергии играют ядра гипоталамуса.
В гипоталамусе имеются полисенсорные
нейроны, реагирующие на изменения
нейроны
концентрации глюкозы, водородных ионов,
температуры тела, осмотического давления, т. е.
важнейших гомеостатических констант
внутренней среды организма.
В ядрах гипоталамуса осуществляется анализ
состояния внутренней среды и
формируются управляющие сигналы,
формируются управляющие сигналы
которые посредством эфферентных систем
приспосабливают ход метаболизма к
потребностям организма.

Эфферентные звенья регуляции обмена веществ

Эфферентные звенья
регуляции обмена веществ
симпатический и парасимпатический
отделы вегетативной нервной системы.
эндокринная система. Гормоны
.
гипоталамуса, гипофиза и других эндокринных
желез оказывают прямое влияние на рост,
размножение, дифференцировку, развитие и
другие функции клеток.
Важнейшим эффектором, через который
оказывается регулирующее воздействие на
обмен веществ и энергии, являются
клетки органов и тканей.

У пойкилотермных или холоднокровных
животных, температура тела переменна и
мало отличается от температуры окружающей
среды.
Гетеротермные организмы ­ при
благоприятных условиях существования
обладают способностью к изотермии, а при
внезапном понижении температуры внешней
среды, недостатке пищи и воды ­ становятся
холоднокровными.
Гомойотермные или теплокровные
организмы поддерживают темпиратуру тела
на относительно постоянном уровне
независимо от колебаний температуры
окружающей среды.

Основная функция системы терморегуляции

Основная функция системы
терморегуляции
­ поддержание оптимальной для
метаболизма организма температуры
тела.
Включает в себя:
1. температурные рецепторы, реагирующие на
изменение температуры внешней и внутренней
среды;
2. центр терморегуляции, расположенный в
гипоталамусе;
3. эффекторное (исполнительное) звено
терморегуляции.

Температура различных областей тела человека

Температура различных
областей тела человека
при низкой (А) и
высокой (Б)
внешней
температуре.
Темно­красное поле -
область «ядра»,
«оболочка»
окрашена цветами
убывающей
интенсивности по
мере снижения
температуры

Перераспределение части кровотока из ядра тела
в его оболочку для увеличения теплоотдачи
А - низкая теплоотдача; Б - высокая.

Эндогенная терморегуляция

Эндогенная терморегуляция

Теплопродукция

Суммарная теплопродукция состоит из
первичной и вторичной теплоты.
Уровень теплообразования в организме
зависит от величины основного обмена.
Вклад в общую теплопродукцию организма
отдельных органов и тканей неравнозначен.
Термогенез:
Сократительный – за счет сокращения
мышц.
Несократительный – за счет ускорения
метаболизма бурого жира.

Основные эффекторные
механизмы включающиеся при
повышении температуры:
1.Массивная вазодилатация в коже
(вазомоторный ответ);
2.Потообразование;
3.Подавление всех механизмов
теплообразования.

Теплоотдача

1.
2.
3.
4.
излучение,
теплопроведение,
конвекция,
испарение.
Тепловое излучение – 60%
Испарение (дыхание
и потоотделение) – 22%
Конвекция – 15%

Виды теплоотдачи

Виды теплоотдачи

Центр терморегуляции

Центр терморегуляции
расположен в медиальной преоптической области
переднего отдела гипоталамуса и в заднем отделе
гипоталамуса.
1)
2)
3)
4)
Группы нервных клеток:
термочувствительные нейроны преоптической области;
клетки, «задающие» уровень поддерживаемой в организме
температуры тела в переднем гипоталамусе;
интернейроны гипоталамуса;
эффекторные нейроны в заднем гипоталамусе.
Система терморегуляции не имеет собственных
специфических эффекторных органов, она
использует эффекторные пути других
физиологических систем
(сердечно­сосудистой, дыхательной, скелетной
мускулатуры, выделительной и др.).

«Вещество и энергия» - Кислород. Обмен веществ и энергии. Зачем животные едят? Молодец! Лазоревка в период кормления птенцов уничтожает до 250 тыс. гусениц. Сила = энергия + мускулы. Чем живое отличается от неживого? Пищевые взаимоотношения между растениями и животными. Растения должны получать из окружающей среды: Заяц. Как вы думаете, почему?

«Обмен веществ в организме» - Тепловая. Выводы. Сколько надо есть, чтобы жить? Функции белков, жиров и углеводов. Расщепление белков. Энергетический обмен. Механическая. Потребность организма в питательных веществах. Нервные центры для регуляции обмена веществ расположены в промежуточном мозге. Как трансформируется энергия в живом организме?

«Обмен веществ» - Энергетический обмен называют катаболизмом (диссимиляцией). Обмен вещества подтверждает закон сохранения массы вещества и энергии. Химическая. Тепловая. Мы считаем, что существует тесная взаимосвязь веществ и энергии с окружающей средой. Преобразование веществ внутри организма представлены пластическим и энергетическим обменом.

«Процесс обмена веществ» -

«Обмен веществ и энергии» - Обмен веществ и энергии. Выделение ненужных и ядовитых веществ. Проговорить друг другу ответы на вопросы, поставить баллы. Поступление веществ и энергии. 2. Найдите соответствие между органом и системой органов. Расщепление? простые + энергия Синтез органических веществ (нужных организму). Что такое обмен веществ?

«Обмен веществ растений» - Объясните, как произошло образование и накопление органических веществ в яблоке. Задача 2. Тема урока: Домашнее задание: Растения дышат кислородом, а выдыхают углекислый газ. В сочных яблоках находится запас органических веществ. Задача 1. Обмен веществ и энергии у растений. Дыхание происходит днем и ночью во всех живых клетках растений.




Анаболизм включает процессы синтеза:

  • Аминокислот
  • Моносахаридов
  • Жирных кислот
  • Нуклеотидов
  • Полисахаридов
  • Белков
  • Нуклеиновых кислот


Анаболические средства (анаболики)

  • Анаболические средства - вещества, действие которых направлено на усиление анаболических процессов в организме, то есть вещества, ускоряющие образование и обновление структурных частей клеток, тканей и мышечных структур. Воздействие на организм заключается в ускорении процессов синтеза сложных молекул (чаще всего - нуклеиновых кислот) из более простых с накоплением энергии.

Подразделяются на стероидные и нестероидные. Стероидные вещества называют анаболическими андрогенными стероидами.

Стероидные вещества

Нестероидные вещества

  • Диоксометилтетрагидропиримидин, торговое название метилурацил
  • оротат калия
  • рибоксин
  • Производные андростана
  • Метандиенон - метандростенолон, неробол, дианабол.
  • Эстрена производные,
  • нандролона деканоат - ретаболил. Нандролона фенилпропионат.

Терапевтическое действие

  • Терапевтическое действие выражается в повышении аппетита, ускорении регенеративных процессов, а также увеличении массы тела. При курсовом употреблении увеличивается мышечная масса, снижается процент жировых отложений в организме. Наблюдается фиксация кальция и фосфора в зубах и костях, повышается общая выносливость, работоспособность. Улучшается функциональное состояние головного мозга. Улучшается кровенаполненность сосудов и оксигенация тканей.

Показания к применению

  • Анаболические вещества используются в медицинской практике - для восстановления после длительных тяжёлых заболеваний. Часто и анаболические стероиды применяются как допинг в спорте, что приводит к побочным действиям. Анаболические стероиды входят в список запрещенных препаратов