Определение скоростей точек плоской фигуры. Определение скоростей точек тела плоской фигуры Уравнения плоского движения

Просмотр: эта статья прочитана 11766 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Плоскопараллельным или плоским движением твердого тела называется движение, при котором все точки тела движутся в плоскостях, которые параллельны некоторой недвижимой плоскости (базовой).

Изучение плоского движения абсолютно твердого тела сведится к изучению одного сечения плоской фигуры, которое определяется движением трех точек, которые не лежат на одной прямой.

Задав угол поворота тела вокруг прямой, которая проходит через полюс А перпендикулярно к плоскости сечения, получим закон плоскопаралельного движения

Плоскопараллельное движение твердого тела состоит из поступательного,при котором точки тела движутся вместе с полюсом, и вращательного вокруг полюса.

Основные кинематические характеристики плоского движения тела:

  • скорость и ускорение поступательного движения полюса,
  • угловая скорость и угловое ускорение вращательного движения вокруг полюса.

Траектория произвольной точки плоской фигуры определяется расстоянием от точки до полюса А и углом вращения вокруг полюса.

Определение скоростей точек плоской фигуры

Скорость произвольной точки равна геометрической сумме скорости точки, которая принята за полюс, и вращательной скорости данной точки в ее вращательном движении вместе с телом вокруг полюса.

Модуль и направление скорости находится построением соответствующего параллелограмма.

Мгновенный центр скоростей (МЦС)

Мгновенный центр скоростей (МЦС) - точка, скорость которой в данный момент времени равна нулю. МЦС рассматривают в качестве полюса.

  1. Скорость произвольной точки тела, которая принадлежит плоской фигуре, равняется ее вращательной скорости вокруг мгновенного центра скоростей. Модуль скорости произвольной точки А равняется произведению угловой скорости тела на длину отрезка от точки до МЦС. Вектор направлен перпендикулярно к отрезку от точки до МЦС в направлении вращения тела
  2. Модули скоростей точек тела пропорциональны их расстояниям до МЦС

Случаи определения мгновенного центра скоростей

  1. Если известны скорость одной точки тела, угловая скорость вращения тела, то для нахождения МЦС (Р) необходимо повернуть вектор скорости точки в сторону вращения на 90 0 и на найденном луче отложить отрезок АР
  2. Если скорости двух точек тела параллельны и перпендикулярны прямой, которая проходит через эти точки, то МЦС находится в точке пересечения этой прямой и прямой, которая соединяет концы векторов скоростей
  3. Если известны направления скоростей двух точек тела и их направления не параллельны, то МЦС находится в точке Р пересечения перпендикуляров, проведенных к скоростям в этих точках
  4. Если колесо катится по недвижимой поверхности без скольжения, то МЦС (Р) находится в точке соприкосновения колеса с недвижимой поверхностью

В случаях 2 и 3 возможные исключения (мгновенно поступательное движение или мгновенный покой).

Сложное движение точки

Сложное движение точки - движение, при котором точка одновременно принимает участие в нескольких движениях.

Относительное движение - движение относительно подвижной системы отсчета.

Переносное движение - движениет подвижной системы отчета (переносящей среды) вместе с точкой относительно неподвижной системы отсчета.

Абсолютное движение - движение точки относительно недвижимой системы отсчета
Абсолютное движение точки является сложным движением, т.к. состоит из относительного и переносного движений.

При сложном движении абсолютная скорость точки равняется геометрической сумме ее относительной и переносной скоростей

Определение ускорений точки

Абсолютное ускорение точки равняется геометрической сумме трех векторов: относительного ускорения, характеризующего изменение относительной скорости в относительном движении; переносного ускорения, характеризующего изменение переносной скорости точки в переносном движении, и ускорения Кориолиса, характеризующего изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении.

Ускорением Кориолиса точки называется двойное векторное произведение угловой скорости переносящей среды и относительной скорости точки.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

3.5.1. Метод полюса

Поскольку движение плоской фигуры можно рассматривать как составное из поступательного, когда все точки фигуры движутся так же, как полюс А со скоростью , и вращательного движения вокруг полюса, то скорость любой точки В фигуры определим векторной суммой скоростей (рис.23).

, (65)

где - скорость полюса точки А ;

Скорость точки В при вращении фигуры вокруг полюса точки А (если считать его неподвижным) численно равна

В перпендикулярно ВА в сторону вращения угловой скорости (рис.23).

Численное значение скорости точки В определим по теореме косинусов

где – угол между векторами и , Î .

Равенство проекций является следствием неизменности расстояния между точками А и В , принадлежащими твердому телу, поэтому равенство будет справедливо для любого движения твердого тела.

3.5.2. Метод мгновенного центра скоростей (МЦС)

Мгновенным центром скоростей называется точка Р плоской фигуры, скорость которой в данный момент времени равна нулю. Скорости всех других точек плоской фигуры в данный момент времени определяются так, как если бы движение фигуры было вращательным относительно точки Р (рис.25).

Рис.25.

Согласно метода полюса скорость точки В будет равна

. (69)

Так как скорость полюса (МЦС) точки Р равна нулю (), то

Вектор скорости направлен из точки В перпендикулярно ВР в сторону вращения угловой скорости w.

Аналогичное равенство можно представить для всех точек плоской фигуры, таким образом, скорости точек плоской фигуры пропорциональны их расстояниям до МЦС.

Для определения положения (МЦС) плоской фигуры, требуется знать направление линий, вдоль которых действуют вектора скоростей точек А и В ( и ). МЦС для данной фигуры будет находиться в точке пересечения перпендикуляров восстановленных к данным линиям.

Для нахождения скорости точки В , согласно рис.25, требуется знать скорость точки А . Тогда угловая скорость движения фигуры в данный момент времени составит

где АР – расстояние точки А до точки Р , определяется согласно исходным данным.

Угловая скорость под действием скорости относительно полюса точки Р направлена по часовой стрелке.

Скорость точки В в данный момент времени составит

Вектор скорости точки В () направлен перпендикулярно линии РВ в сторону вращения угловой скорости w (рис.25).

3.5.2.1. Понятие о центроидах

Траектория, которую описывает МЦС вместе с подвижной фигурой, называется подвижной центроидой (пример, при движении колеса по поверхности без скольжения (табл.2) подвижной центроидой является внешняя окружность колеса).

Геометрическое место МЦС, положений точки Р на неподвижной плоскости, называют неподвижной центроидой (при движении колеса по поверхности без скольжения (см. табл.2) неподвижной центроидой является неподвижная поверхность, по которой катится колесо).

3.5.2.2. Частные случаи МЦС

Таблица 2.

Мгновенно-поступательное движение звена АВ Движение колеса по поверхности (без скольжения) Движение подвижного блока
Точка В движется по прямой х-х , следовательно, скорость V B направлена вдоль оси, проводим перпендикуляр к оси х-х . Поскольку перпендикулярные линии не пересекаются, то звено АВ находится в мгновенно-поступательном движении, скорости всех точек этого звена равны, МЦС находится в бесконечности, . МЦС находится в точке касания колеса с неподвижной поверхностью, по- которой катится колесо, точке Р . Угловая скорость колеса, составит . Скорости точек В , С МЦС (точка Р ) находится в точке пересечения отрезка АВ и прямой, проходящей через концы векторов и . Определение положения точки Р . Угловая скорость блока

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоскости фигуры имеют скорости и , непараллельные друг другу (рис. 2.21.). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и Вb к вектору , и будет мгновенным центром скоростей, так как .

Рисунок 2.21

В самом деле, если , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ), и ВР (так как ), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точку Р за полюс. То скорость точки А будет

и так для любой точки фигуры.

Из этого следует еще, что и , тогда

= , (2.54)

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 2.22), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и следовательно, является мгновенным центром скоростей.



Рисунок 2.22

2. Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.2.23,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек // . При этом из теоремы о проекциях скоростей следует, что , т.е. , в этом случае фигура имеет мгновенное поступательное движение. , которое дает .

Скорость произвольной точки М фигуры определим как сумма скоростей, которые точка получает при поступательном движении вместе с полюсом и вращательном движении вокруг полюса.

Представим положение точки М как (рис.1.6).

Продифференцировав это выражение по времени получим:

, т.к.

.

При этом скорость v MA . которую точка М получает при вращении фигуры вокруг полюса А , будет определяться из выражения

v MA =ω ·MA ,

где ω - угловая скорость плоской фигуры.

Скорость любой точки М плоской фигуры геометрически складывается из скорости точки А , принятой за полюс, и скорости, точки М при вращении фигуры вокруг полюса. Модуль и направление скорости этой скорости находятся построением параллелограмма скоростей.

Задача 1

Определить скорость точки А, если скорость центра катка равна 5м/с, угловая скорость катка . Радиус катка r=0,2м, угол . Каток катиться без скольжения.

Так как тело совершает плоскопараллельное движение, то скорость точки А будет состоять из скорости полюса (точка С ) и скорости полученной точкой А при вращении вокруг полюса С .

,

Ответ:

Теорема о проекциях скоростей двух точек тела, движущего плоскопараллельно

Рассмотрим какие-нибудь две точки А и В плоской фигуры. Принимая точку А за полюс (рис.1.7), получаем

Отсюда, проецируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендикулярен АВ , находим

v B ·cosβ =v A ·cosα+ v В A ·cos90° .

т.к. v В A ·cos90°=0 получаем: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны.

Задача 1

Стержень АВ скользит по гладкой стене вниз и гладкому полу, скорость точки A V A =5м/с, угол между полом и стержнем АВ равен 30 0 . Определить скорость точки В.


Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

При определении скоростей точек плоской фигуры через скорость полюса, скорость полюса и скорость вращательного движения вокруг полюса могут быть равны по величине и противоположны по направлению и существует такая точка Р, скорость которой в данный момент времени равна нулю , называют ее мгновенным центром скоростей.

Мгновенным центром скоростей называется точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю.

Скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было мгновенно вращательным вокруг оси проходящей через мгновенный центр скоростей (рис. 1.8).

v A =ω ·PA ; ().

Т.к. v B =ω ·PB ; (), то w= v B /PB =v A /PA

Скорости точек плоской фигуры пропорциональны кратчайшим расстояниям от этих точек до мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1) для определения положения мгновенного центра скоростей надо знать величину и направления скорости и направление скорости каких-нибудь двух точек А и В плоской фигуры; мгновенный центр скоростей P находится в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек;

2) угловая скорость ω плоской фигуры в данный момент времени равна отношению скорости к расстоянию от нее до мгновенного центра Р скоростей: ω =v А /;

3) Скорость точки по отношению к мгновенному центру скоростей P укажет направление угловой скорости w.

4) Величина скорости точки прямопропорциональна кратчайшему расстоянию от точки В к мгновенному центру скоростей Р v А = ω·ВР

Задача 1

Кривошип ОА длиной 0,2м вращается равномерно с угловой скоростью ω=8 рад/с . К шатуну АВ в точке С шарнирно прикреплен шатун CD. Для заданного положения механизма определить скорость точки D ползуна, если угол .

Движение точки В ограничено горизонтальными направляющими, ползун может совершать только поступательное движение по горизонтальным направляющим. Скорость точки В направлена в туже сторону что и . Так как две точки шатуна имеют одинаковое направление скоростей, то тело совершает мгновенно поступательное движение, и скорости всех точек шатуна имеют одинаковое направление и значение.

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюсаА , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюсаА ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюсаА :

где - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точкиА , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.31).


Рис.30 Рис.31

23. Фактически уравнением поступательного движения твердого тела является уравнение второго закона Ньютона: Используя уравнения:

И получаем .

24.В этом случае составляющие

– момента внешних сил, направленные вдоль x и y , компенсируются моментами сил реакции закрепления .

Вращение вокруг оси z происходит только под действием

6.4 6.5

Пусть некоторое тело вращается вокруг оси z .Получим уравнение динамики для некоторой точки m i этого тела находящегося на расстоянии R i от оси вращения. При этом помним, что и

Направлены всегда вдоль оси вращения z, поэтому в дальнейшем опустим значок z .





Так как у всех точек разная, введем, вектор угловой скорости причем


Так как тело абсолютно твердое, то в процессе вращения m i иR i останутся неизменными. Тогда:

Обозначим I i – момент инерции точки находящейся на расстоянии R от оси вращения:

Так как тело состоит из огромного количества точек и все они находятся на разных расстояниях от оси вращения, то момент инерции тела равен:

где R – расстояние от оси z до dm. Как видно, момент инерции I – величина скалярная.

Просуммировав по всем i- ым точкам,

получим или - Это основное уравнение

динамики тела вращающегося вокруг неподвижной оси .

26) Момент импульса твердого тела.


Момент импульса есть векторная сумма моментов импульсов всех материальных точек тела относительно неподвижной оси.

Если ось вращения твердого тела закреплена, то момент силы перпендикулярный этой оси ()за счет сил трения в подшипниках всегда будет равняться нулю.

Скорость изменения момента импульса твердого тела вдоль оси вращения, которая закреплена, равняется результирующему моменту внешних сил, направленному вдоль этой оси.

– момент инерции.

28)Момент сил трения качения – закон Кулона. Коэффициент трения качения.

Трение качения. Существование трения качения можно установить экспериментально, например, при исследовании качения тяжелого цилиндра радиуса на горизонтальной плоскости.

Если цилиндр и плоскость - твердые тела с шероховатыми поверхностями (рис. 55, a), то их касание будет происходить в точке, сила N уравновешивает силу тяжести P, а горизонтальная сила Q и сила трения F образуют пару сил (Q,F) под действием которой цилиндр должен начинать движение при любых величинах силы Q. В действительности же цилиндр начинает движение после того, как величина силы Q превысит предельное значение Ql.

Этот факт можно объяснить, если предположить, что цилиндр и плоскость деформируются. Тогда их контакт будет происходить по малой площадке или лунке (на рис. 55, b малая площадка изображена своим сечением). При увеличении силы Q центр давления будет перемещаться из середины сечения вправо. В результате образуется пара сил (P,N), которая препятствует началу движения цилиндра. В состоянии предельного равновесия на цилиндр действуют пара сил (Ql,F) с моментом Ql·r и уравновешивающая ее пара (P,N) с моментом N·δ, где δ - значение максимального смещения. Из равенства моментов пар сил находим (6)

Пока Q Ql начинается качение.

Обычно рис. 55, b упрощают, не изображая на нем смещения точки приложения нормальной реакции, добавляя к силам на рис. 55, a пару сил, препятствующую качению цилиндра, как показано на рис. 55, c.

Момент этой пары сил называется моментом трения качения , он равен моменту пары сил (P,N): (7)

Входящая в формулы (6) и (7) величина максимального смещения точки приложения нормальной реакции δ называется коэффициентом трения качения. Он имеет размерность длины и определяется экспериментально. Приведем приближенные значения этого коэффициента (в метрах) для некоторых материалов: дерево по дереву δ = 0,0005-0,0008; мягкая сталь по стали (колесо по рельсу) - 0.00005; закаленная сталь по стали (шарикоподшипник) - 0.00001.

Отношение δ/r в формуле (6) для большинства материалов значительно меньше коэффициента трения покоя f0 . Поэтому в технике, когда это возможно, стремятся скольжение заменить качением (колеса, катки, шарикоподшипники и т.п.).

Закон Амонтона - Кулона

Основная статья: Закон Кулона (механика)

Не путать с законом Кулона!

Основной характеристикой трения является коэффициент трения μ, который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

В простейших случаях сила трения F и нормальная нагрузка (или сила нормальной реакции) Nnormal связаны неравенством обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона - Кулона.