Направление вектора нормального ускорения. Ускорение

Виды ускорений в СТО.

Итак, мы показали, что существует два вида измеримых скоростей. Кроме того, быстрота, измеряемая в тех же единицах, тоже очень интересна. При малых значениях все эти скорости равны.

А сколько же существует ускорений? Какое ускорение должно быть константой при равноускоренном движении релятивистской ракеты, чтобы космонавт всегда оказывал на пол ракеты одну и ту же силу, чтобы он не стал невесомым, или чтобы он не умер от перегрузок?

Введем определения разных видов ускорений.

Координатно-координатное ускорение dv /dt это изменение координатной скорости , измеренное по синхронизированным координатным часам

dv /dt=d 2 r /dt 2 .

Забегая вперед, заметим, что dv /dt = 1·dv /dt = g 0 dv /dt.

Координатно-собственное ускорение dv /dt это изменение координатной скорости, измеренное по собственным часам

dv /dt=d(dr /dt)/dt = gd 2 r /dt 2 .
dv /dt = g 1 dv /dt.

Собственно-координатное ускорение db /dt это изменение собственной скорости, измеренное по синхронизированным координатным часам , расставленным по ходу движения пробного тела:

db /dt = d(dr /dt)/dt = g 3 v (v dv /dt)/c 2 + gdv /dt.
Если v || dv /dt, тогда db /dt = g 3 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = gdv /dt.

Собственно-собственное ускорение db /dt это изменение собственной скорости, измеренное пособственным часам , связанным с движущимся телом:

db /dt = d(dr /dt)/dt = g 4 v (v dv /dt)/c 2 + g 2 dv /dt.
Если v || dv /dt, тогдаdb /dt = g 4 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = g 2 dv /dt.

Сравнивая показатели при коэффициенте g в четырех типах ускорений, записанных выше, замечаем, что в этой группе отсутствует член с коэффициентом g 2 при параллельных ускорениях. Но мы еще не взяли производные от быстроты. Это ведь тоже скорость. Возьмём производную по времени от быстроты, воспользовавшись формулой v/c = th(r/c):

dr/dt = (c·arth(v/c))" = g 2 dv/dt.

А если взять dr/dt, получим:

dr/dt = g 3 dv/dt,

или dr/dt = db/dt.

Следовательно, мы имеем две измеримые скорости v и b , и ещё одну, неизмеримую, но наиболее симметричную, быстроту r. И шесть видов ускорений, два из которых dr/dt и db/dt совпадают. Какое же из этих ускорений является собственным, т.е. ощущаемым ускоряющимся телом?



К собственному ускорению мы вернемся ниже, а пока выясним, какое ускорение входит во второй закон Ньютона. Как известно, в релятивистской механике второй закон механики, записанный в видеf =ma , оказывается ошибочным. Вместо него силу и ускорение связывает уравнение

f = m (g 3 v (va )/c 2 + ga ),

которое является основой для инженерных расчетов релятивистских ускорителей. Если мы сравним это уравнение с только что полученным уравнением для ускорения db /dt:

db /dt = g 3 v (v dv /dt)/c 2 + gdv /dt,

то заметим, что они отличаются лишь множителем m. То есть, можно записать:

f = m·db /dt.

Последнее уравнение возвращает массе статус меры инертности в релятивистской механике. Сила, действующая на тело, пропорциональна ускорению db /dt. Коэффициентом пропорциональности является инвариантная масса. Вектора силы f иускорение db /dt сонаправлены при любой ориентации векторов v иa , или b и db /dt.

Формула, записанная через ускорение dv /dt, не дает такой пропорциональности. Сила и координатно-координатное ускорение в общем случае не совпадают по направлению. Параллельными они будут лишь в двух случаях: если вектора v иdv /dtпараллельны друг другу, и если они перпендикулярны друг другу. Но в первом случае сила f =mg 3 dv /dt, а во втором - f =mgdv /dt.

Таким образом, в законе Ньютона мы должны использовать ускорение db /dt, то есть, изменениесобственной скоростиb , измеренное по синхронизированным часам.

Возможно с таким же успехом можно будет доказать, что f = mdr /dt, где dr /dt - вектор собственного убыстрения, но быстрота величина неизмеримая, хотя и легко вычисляема. Будет ли верно векторное равенство, сказать не берусь, но скалярное равенство справедливо в силу того, что dr/dt=db/dt и f =mdb /dt.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости 2 .

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов :

= τ + n

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

    К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

    Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

    где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

    где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

    .

    В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

    .

    Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

    Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

    .

    Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

    При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

    Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

    Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

    Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


    У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.

    Изучение физики начинают с рассмотрения механического движения. В общем случае тела движутся по кривым траекториям с переменными скоростями. Для их описания используют понятие ускорения. В данной статье рассмотрим, что такое тангенциальное и нормальное ускорение.

    Кинематические величины. Скорость и ускорение в физике

    Кинематика механического движения - это раздел физики, который занимается изучением и описанием перемещения тел в пространстве. Кинематика оперирует тремя главными величинами:

    • пройденный путь;
    • скорость;
    • ускорение.

    В случае движения по окружности используют аналогичные кинематические характеристики, которые приведены к центральному углу окружности.

    С понятием скорости знаком каждый. Она показывает быстроту изменения координат тел, находящихся в движении. Скорость всегда направлена по касательной к линии, вдоль которой тело перемещается (траектории). Далее линейную скорость будем обозначать v¯, а угловую скорость - ω¯.

    Ускорение - это скорость изменения величин v¯ и ω¯. Ускорение - это тоже однако ее направление совершенно не зависит от вектора скорости. Ускорение всегда направлено в сторону действующей на тело силы, которая вызывает изменение вектора скорости. Ускорение для любого типа движения можно рассчитать по формуле:

    Чем сильнее изменится скорость за интервал времени dt, тем больше будет ускорение.

    Касательное и нормальное ускорение

    Предположим, что материальная точка движется по некоторой кривой линии. Известно, что в некоторый момент времени t ее скорость была равна v¯. Поскольку скорость - это касательный к траектории вектор, ее можно представить в следующем виде:

    Здесь v - длина вектора v¯, а u t ¯ - единичный вектор скорости.

    Чтобы вычислить вектор полного ускорения в момент времени t, необходимо найти производную скорости по времени. Имеем:

    a¯ = dv¯ / dt = d (v × u t ¯) / dt

    Поскольку модуль скорости и единичный вектор изменяются со временем, то, пользуясь правилом нахождения производной от произведения функций, получаем:

    a¯ = dv / dt × u t ¯ + d (u t ¯) / dt × v

    Первое слагаемое в формуле называется тангенциальной, или касательной компонентой ускорения, второе слагаемое - это нормальное ускорение.

    Касательное ускорение

    Еще раз запишем формулу для вычисления касательного ускорения:

    a t ¯ = dv / dt × u t ¯

    Это равенство означает, что тангенциальное (касательное) ускорение направлено так же, как вектор скорости в любой точке траектории. Оно численно определяет изменение модуля скорости. Например, в случае прямолинейного движения состоит только из касательной составляющей. Нормальное ускорение при таком типе перемещения равно нулю.

    Причиной появления величины a t ¯ является воздействие внешней силы на движущееся тело.

    В случае вращения с постоянным угловым ускорением α тангенциальная составляющая ускорения может быть вычислена по следующей формуле:

    Здесь r - это радиус вращения рассматриваемой материальной точки, для которой вычисляется величина a t .

    Нормальное или центростремительное ускорение

    Теперь выпишем еще раз вторую компоненту полного ускорения:

    a c ¯ = d (u t ¯) / dt × v

    Из геометрических соображений можно показать, что производная единичного касательного к траектории вектора по времени равна отношению модуля скорости v к радиусу r в момент времени t. Тогда выражение выше запишется так:

    Эта формула нормального ускорения свидетельствует, что оно, в отличие от касательной компоненты, не зависит от изменения скорости, а определяется квадратом модуля самой скорости. Также a c возрастает с уменьшением радиуса вращения при постоянной величине v.

    Нормальное ускорение называют центростремительным потому, что оно направлено от центра масс вращающегося тела к оси вращения.

    Причиной появления этого ускорения является центральная компонента воздействующей на тело силы. Например, в случае вращения планет вокруг нашего Солнца центростремительной силой является гравитационное притяжение.

    Нормальное ускорение тела изменяет только направление скорости. Оно не способно изменить ее модуль. Этот факт является важным его отличием от касательной компоненты полного ускорения.

    Поскольку центростремительное ускорение возникает всегда, когда вектор скорости поворачивается, то оно существует также в случае равномерного вращения по окружности, при котором тангенциальное ускорение равно нулю.

    На практике ощутить на себе влияние нормального ускорения можно, если находиться в машине, когда она совершает затяжной поворот. В этом случае пассажиров прижимает к противоположной направлению поворота двери автомобиля. Это явление - результат действия двух сил: центробежной (смещение пассажиров со своих мест) и центростремительной (давление на пассажиров со стороны двери автомобиля).

    Модуль и направление полного ускорения

    Итак, мы выяснили, что тангенциальная компонента рассматриваемой физической величины направлена по касательной к траектории движения. В свою очередь, нормальная компонента перпендикулярна траектории в данной точке. Это означает, что две компоненты ускорения перпендикулярны друг другу. Их векторное сложение дает вектор полного ускорения. Вычислить его модуль можно по следующей формуле:

    a = √(a t 2 + a c 2)

    Направление вектора a¯ можно определить как относительно вектора a t ¯, так и относительно a c ¯. Для этого следует использовать соответствующую тригонометрическую функцию. Например, угол между полным и нормальным ускорениями равен:

    Решение задачи на определение центростремительного ускорения

    Колесо, которое имеет радиус 20 см, раскручивается с угловым ускорением 5 рад/с 2 в течение 10 секунд. Необходимо определить нормальное ускорение точек, находящихся на периферии колеса, через указанное время.

    Для решения задачи воспользуемся формулой связи между тангенциальным и угловым ускорениями. Получаем:

    Поскольку равноускоренное движение длилось в течение времени t = 10 секунд, то приобретенная за это время линейная скорость была равна:

    v = a t × t = α × r × t

    Полученную формулу подставляем в соответствующее выражение для нормального ускорения:

    a c = v 2 / r = α 2 × t 2 × r

    Остается подставить известные значения в это равенство и записать ответ: a c = 500 м/с 2 .

    Тангенциальное(касательное) ускорение -это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

    Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

    Нормальное ускорение - это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

    Вектор перпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

    Формула скорости при равноускоренном движении

    Поступательное и вращательное движение твердого тела.

    Поступательное движение - движение, при котором все точки тела движутся по одинаковым траекториям.
    Поступательное движение бывает двух типов: равномерное и неравномерное.

    Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

    Угловая скорость. Угловое ускорение .

    Угловая скорость - векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

    Угловое ускорение - псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

    Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

    Связь линейной скорости с угловой и тангенциального ускорения с угловым.

    Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

    Линейная скорость точки по определению.

    Первый закон Ньютона (или закон инерции )

    Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

    Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

    В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

    1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

    2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

    3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

    4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

    Масса – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

    Сила – является количественной мерой действия одного тела на другое.

    Второй закон Ньютона.

    Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

    Измеряется в

    Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

    Выражение второго закона Ньютона через изменение импульса тела

    Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

    Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

    Равноускоренное движение - движение, при котором ускорение постоянно по модулю и направлению.